skip to main content


Search for: All records

Creators/Authors contains: "Mannsfeld, Stefan C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Polymorphism, the ability for a given material to adopt multiple crystalline packing states, is a powerful approach for investigating how changes in molecular packing influence charge transport within organic semiconductors. In this study, a new “thin film” polymorph of the high‐performance, p‐type small molecule N‐octyldiisopropylsilyl acetylene bistetracene (BT) is isolated and characterized. Structural changes in the BT films are monitored using static and in situ grazing‐incidence X‐ray diffraction. The diffraction data, combined with simulation and crystallographic refinement calculations, show the molecular packing of the “thin film” polymorph transforms from a slipped 1D π‐stacking motif to a highly oriented and crystalline film upon solvent vapor annealing with a 2D brick‐layer π‐stacking arrangement, similar to the so‐called “bulk” structure observed in single crystals. Charge transport is characterized as a function of vapor annealing, grain orientation, and temperature. Demonstrating that mobility increases by three orders of magnitude upon solvent vapor annealing and displays a differing temperature‐dependent mobility behavior.

     
    more » « less